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Hippocampal volumetry derived from structural MRI is increasingly used to delineate regions of interest for
functional measurements, assess efficacy in therapeutic trials of Alzheimer's disease (AD) and has been
endorsed by the new AD diagnostic guidelines as a radiological marker of disease progression. Unfortunately,
morphological heterogeneity in AD can prevent accurate demarcation of the hippocampus. Recent develop-
ments in automated volumetry commonly use multi-template fusion driven by expert manual labels,
enabling highly accurate and reproducible segmentation in disease and healthy subjects. However, there
are several protocols to define the hippocampus anatomically in vivo, and the method used to generate
atlases may impact automatic accuracy and sensitivity — particularly in pathologically heterogeneous sam-
ples. Here we report a fully automated segmentation technique that provides a robust platform to directly
evaluate both technical and biomarker performance in AD among anatomically unique labeling protocols.
For the first time we test head-to-head the performance of five common hippocampal labeling protocols
for multi-atlas based segmentation, using both the Sunnybrook Longitudinal Dementia Study and the entire
Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) baseline and 24-month dataset. We based these atlas
libraries on the protocols of (Haller et al., 1997; Killiany et al., 1993; Malykhin et al., 2007; Pantel et al., 2000;
Pruessner et al., 2000), and a single operator performed all manual tracings to generate de facto “ground
truth” labels. All methods distinguished between normal elders, mild cognitive impairment (MCI), and AD
in the expected directions, and showed comparable correlations with measures of episodic memory perfor-
mance. Only more inclusive protocols distinguished between stable MCI and MCI-to-AD converters, and
had slightly better associations with episodic memory. Moreover, we demonstrate that protocols including
more posterior anatomy and dorsal white matter compartments furnish the best voxel-overlap accuracies
(Dice Similarity Coefficient=0.87–0.89), compared to expert manual tracings, and achieve the smallest sam-
ple sizes required to power clinical trials in MCI and AD. The greatest distribution of errors was localized to
the caudal hippocampus and the alveus-fimbria compartment when these regions were excluded. The defi-
nition of the medial body did not significantly alter accuracy among more comprehensive protocols.
Voxel-overlap accuracies between automatic and manual labels were lower for the more pathologically het-
erogeneous Sunnybrook study in comparison to the ADNI-1 sample. Finally, accuracy among protocols ap-
pears to significantly differ the most in AD subjects compared to MCI and normal elders. Together, these
results suggest that selection of a candidate protocol for fully automatic multi-template based segmentation
in AD can influence both segmentation accuracy when compared to expert manual labels and performance as
a biomarker in MCI and AD.
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Introduction
S.M. Nestor et al. / Neu
The hippocampus is one of the most extensively studied medial
temporal lobe (MTL) structures in Alzheimer's disease (AD), demon-
strating early pathological atrophy (den Heijer et al., 2010; Jack et al.,
2009) and association with episodic memory decline (Leung et al.,
2010; Schuff et al., 2009). Importantly, hippocampal volumetry of-
fers an attractive marker to quantify pathoanatomical changes and
delineate functional changes across the continuum of AD progres-
sion (Dubois et al., 2007). It has been proposed for use in putative
AD-modifying therapeutic trials, as both an in vivomarker of disease
progression and to select candidate patients for study enrichment
(Hampel et al., 2010). Moreover, radiological assessment of the hip-
pocampus was recently endorsed by the new mild cognitive impair-
ment (MCI) and AD diagnostic guidelines (McKhann et al., 2011).

Recent automated hipppocampal segmentation techniques are
commonly based on a priori anatomical characteristics and encom-
pass several strategies, which furnish volumetric and/or surface
based information (Collins and Pruessner, 2010; Hu et al., 2011;
Leung et al., 2010; Lotjonen et al., 2011; Patenaude et al., 2011;
Shen et al., 2012; Wang et al., 2011b). In particular, techniques
using multi-atlas registration and fusion strategies generate some of
the best accuracies among automated methods to-date (Aljabar et
al., 2009; Collins and Pruessner, 2010; Leung et al., 2010; Lotjonen
et al., 2010; Wang et al., 2011b; Wolz et al., 2010a) Multi-atlas
techniques use a series of structural MRIs that have been labeled by
an expert operator (atlas library), which are then selectively regis-
tered to an unseen or query subject's MRI. The technique is based
on three principal steps that include (1) atlas-to-target (query) MRI
similarity matching, (2) image registration with binary label mapping
to the target MRI and (3) label fusion. This framework requires only a
single 3-dimensional high-resolution T1-weighted MRI acquisition,
and is suitable for segmenting the hippocampus from large prospec-
tive studies and legacy MRI datasets. Template libraries can be
customized for pathological studies in epilepsy (Hammers et al., 2007)
and AD (Leung et al., 2010), effectively capturing the significant mor-
phological variation that occurs in both disease processes. Moreover,
advances in diffeomorphic registration algorithms (Avants et al., 2008;
Klein et al., 2009) may provide improved label mapping to target im-
ages compared to other registration techniques. Although multi-atlas
fusion methods are computationally more expensive than some
automated techniques, improvements in server memory and parallel
processing can significantly expedite segmentation.

There are several degrees of freedom within a multi-template
based approach, which may impact accuracy including atlas assem-
bly, template-to-target matching scheme, registration parameters
(affine+nonlinear), label hybridization and false positive minimiza-
tion. A number of recent methods have focused on improving atlas
selection, label fusion strategy and post-fusion modifications, show-
ing equivocal outcomes. For example, (Leung et al., 2010) compared
accuracy across label combination methods for the Multi-Atlas Prop-
agation Segmentation (MAPS) tool including shape-based average
(SBA) (Rohlfing and Maurer, 2007), voxel-wise voting and Simulta-
neous Truths and Probability Label Estimation (STAPLE) (Warfield
et al., 2004), with STAPLE achieving the best performance, although
(Robitaille and Duchesne, 2012) reported that SBA frequently
outperformed both STAPLE and vote method. Techniques also use
graph-cuts and morphological operations to improve label mapping
(van der Lijn et al., 2008). Other work has compared registration
methods for subcortical segmentation, demonstrating that non-
linear label propagation methods furnish greater accuracy than rigid
and affine normalization (Barnes et al., 2008; Leung et al., 2010).

Despite these advances, there remains significant variation in
atlas construction among multi-template driven techniques, which
are commonly developed and validated using in-house manual
tracing datasets. The hippocampus has been historically defined
using various cerebrospinal fluid (CSF), white matter (WM), grey
matter (GM) and landmark-based boundaries, and can be labeled
in various stereotactic spaces (e.g. normalization to brain templates
and reorientation along either the anterior commissure–posterior
commissure (AC–PC) line or the long hippocampal axis) (Boccardi
et al., 2011). In fact a recent literature review by Konrad and
colleagues identified 71 hippocampal tracing methods. Indeed, the
absolute volume differences between certain protocols may vary by
>30% (Konrad et al., 2009). Additionally, hippocampal atlas libraries
use varying template numbers, combine tracings bymultiple operators,
include/exclude certain pathologies — all of which prevent direct
performance assessments among protocols. In dementia the relative
positions of anatomical landmarks can change in the atrophic sub-
cortex, which may confound landmark driven delineation. When
taken together, these issues complicate direct comparisons among tech-
niques to determine an optimal definition for atlas-driven segmentation.

Accordingly, to directly measure the performance of different an-
atomical definitions for atlas-based segmentation, a study design
should satisfy certain minimum requirements. First, a common pipe-
line should be used for label generation. Second, hippocampal labels
must be derived from a common dataset (library); third, a single
expert operator should label all template MRIs for consistency, and
finally, these atlases should be validated against common datasets.
Only a few studies in AD have compared different automated hippo-
campal segmentation methods using a common dataset (Holland et
al., 2011; Leung et al., 2010; Mouiha et al., 2011; Wolz et al.,
2010b), although these studies were usually based on numeric
summary data, unique algorithms and various structural priors. In
addition, previous direct volumetric-based comparisons of the hip-
pocampus have been limited by sample size and/or survey only a
few methods (Carmichael et al., 2005).

To the authors' knowledge, there have been no head-to-head mor-
phometric comparisons of template protocols for multi-template hippo-
campal segmentation techniques that satisfy all of the abovementioned
criteria and therefore performance across template protocols remains
unclear. Thus, the primary goal of the current study is to directly evaluate
whether morphological variation among 5 structurally unique and com-
monly deployed hippocampal labeling protocolsmodulates the accuracy
and sensitivity of automated multi-atlas segmentation in AD, using the
entire baseline and 24-month Alzheimer's Disease Neuroimaging
Initiative-1 (ADNI-1) MRI database (Weiner et al., 2010).

To investigate these relationships, we developed a fully automated
multi-atlas segmentation technique that provides a robust platform to
evaluate performance among anatomically unique labeling protocols.
We refer to this method as the SunnyBrook Hippocampal Volumetry
(SBHV) Tool. A single expert operator created 5 template libraries that
were selected from 12 protocols investigated by the hippocampal har-
monization initiative (Frisoni and Jack, 2011): Protocol 1 (P1) (Haller
et al., 1997); Protocol 2 (P2) (Killiany et al., 1993); Protocol 3 (P3)
(Malykhin et al., 2007); Protocol 4 (P4) (Pruessner et al., 2000), and
Protocol 5 (P5) (Pantel et al., 2000). This is a largemulti-national project
sponsored by the ADNI, the European Alzheimer Disease Consortium
(EADC), non-profit organizations and industry partners that are work-
ing towards a consensus definition to manually label the hippocampus
in-vivo (Frisoni and Jack, 2011). A detailed description of the project
methodology and results is available from www.hippocampal-
protocol.net/SOPs. In the present study, all five template libraries were
manually segmented from a set of 50 in-house acquired high-
resolution T1-weightedMRI scans that included normal elderly controls
(NC), AD, AD with small vessel disease (AD+SVD), vascular dementia
(VaD) and mixed dementia (VaD+AD). All previously reported tem-
plate libraries in AD are based on ADNI-1 data or other pure AD samples
(Barnes et al., 2008; Leung et al., 2010; Wang et al., 2011b; Wolz et al.,
2010b). The rationale for including several diagnostic groups was to in-
cludemore representativemorphological variation and improve gener-
alizability to a tertiary memory clinic cohort. Indeed, population-based

http://www.hippocampal-protocol.net/SOPs
http://www.hippocampal-protocol.net/SOPs


52 S.M. Nestor et al. / NeuroImage 66 (2013) 50–70
studies suggest that AD and cerebrovascular disease (CVD) together ac-
count for 80% of dementia cases, with mixed AD plus superimposed
CVD accounting for 38% in a community autoposy study (Schneider et
al., 2007). Moreover, an ADNI-1 study by Carmichael and colleagues
reported compelling evidence that white matter disease predicts
1-year cognitive decline in MCI and AD (Carmichael et al., 2010).

The specific objectives were to directly compare 5 commonly used
hippocampal segmentation protocols within an automated multi-
template fusion framework by (i) assessment of voxel-wise similarity
to ground truth manual labels within and across diagnostic groups,
(ii) compare differences in baseline volumes and baseline normalized
atrophy rates, (iii) compare neurocognitive-anatomical correlations
and (iv) compare differences among samples sizes required to detect
a 25% reduction in the rate of MCI- and AD-type hippocampal atrophy
in a hypothetical disease-modifying therapeutic trial. Voxel-wise
accuracy was evaluated for each automated protocol using a
leave-one-out cross-validation (LOOCV) analysis on a large in-house
dataset and further cross-validated using a random selection of 30
manual tracings derived from NC, patients with MCI and patients
with AD that participated in the ADNI-1 study. Finally, all available
baseline and 24-month ADNI-1 datasets were segmented using the
5 automated methods. We chose 24 months as our longitudinal inter-
val, as this has been previously recommend for measuring disease
progression in AD (Jack et al., 2011).

Materials and methods

Subjects

Sunnybrook
A total of 50 subjects' 1.5 Tesla 3D high-resolutionMRI scans were

used to generate a library of MRI templates and were selected from
over 1000 subjects participating in the longitudinal Sunnybrook
Dementia Study (Pettersen et al., 2008), here on referred to as the
Sunnybrook dataset. All subjects were recruited from the LC Campbell
Cognitive Neurology Research Unit, Sunnybrook Health Sciences
Centre at the University of Toronto. Patients underwent standard-
ized clinical dementia assessments, including medical history and
examination, blood tests, single-photon emission computed tomog-
raphy, MRI, and neuropsychological testing. Alzheimer's disease pa-
tients were diagnosed according to National Institute of Neurological
and Communicative Disorders and Stroke and the Alzheimer's Dis-
ease and Related Disorders Association criteria (McKhann et al.,
1984) or for VaD according to the National institute of Neurological
Disorders and Stroke-Canadian Stroke Network Vascular Cognitive
Impairment Harmonization Standards (Hachinski et al., 2006).
Small vessel disease was identified on MRI as silent lacunar infarcts
(small hypointense (CSF isointense) regions on T1-weighted MRI),
or as white matter hyperintensities that appear as punctate or dif-
fuse regions of hyperintense signal on T2/PD and FLAIR MRI
(Ramirez et al., 2011), or microbleeds on gradient echo (T2*) MRI.
Normal controls were community-dwelling, healthy elderly volun-
teers with normal baseline neurocognitive test results. Demographic
and co-morbid disease data were acquired on patients, including age,
sex, years of education and vascular risk factors. The Sunnybrook
Health Sciences Centre research ethics board approved the project
and all participants or substitute decision maker provided informed
consent.

ADNI-1
Certain clinical, demographic and T1-weighted MRI used in the

preparation of this article were downloaded by the authors from
the ADNI-1 database (adni.loni.ucla.edu) between September and
November 2011. The ADNI-1 was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imag-
ing and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organiza-
tions, as a $60million, 5-year public- private partnership. The prima-
ry goal of ADNI-1 has been to test whether serial MRI, positron
emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure
the progression of MCI and early AD. Determination of sensitive
and specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical
trials.

MRI

Sunnybrook
Sunnybrook participant MRI scans were performed on a 1.5-Tesla

Signa system (GE Healthcare, Chalfont St. Giles, England). The acqui-
sition parameters for the T1-weighted 3-dimensional volumetric
spoiled gradient echo sequence were 124 slices; matrix, 256×192;
22×16.5 cm FOV; number of excitations, 1; echo time/repetition
time, 35 ms/5 ms; flip angle, 35°, and an in plane resolution of
0.859×0.859 mm slice thickness, 1.2–1.4 mm depending on head
size.

ADNI-1 acquisitions
All ADNI-1 participants had high-resolution structural brain MRI

scans acquired using a protocol developed for the study by Jack and
colleagues (Jack et al., 2008b). Scans were acquired from 59 ADNI sites
on 1.5 Tesla GE Health Care, Philips Medical Systems and Siemens MRI
scanners. A 3D MP-RAGE scanning protocol was used that captured im-
ages in the sagittal plane with the following parameters, repetition
time (TR) of 2400 ms, minimum full TE, inversion time (TI) of
1000 ms, flip angle of 8°, 24 cm field of view, 192×192×166 acquisition
matrix (x, y and z dimensions), and a voxel size of 1.25×1.25×1.2 mm3.
All MRI scans were evaluated for quality control.

MRI pre-processing

Sunnybrook
A rotation matrix was generated in ANALYZE software (Biomedical

Imaging Resource, Mayo foundation, Rochester, MN, USA) by manual
placement of landmarks, which were used to align the MRIs along the
plane that intersected the anterior and posterior commissures
(i.e. AC–PC line) (Ramirez et al., 2011). All raw T1-weighted tem-
plate images were then reoriented using trilinear interpolation
into AC-PC alignment by applying the manually generated rotation
matrices and were additionally re-sliced into isotropic 0.86 mm3

voxels. (Ramirez et al., 2011). The open source FSL 4.1 distribution
Brain Extraction Tool (BET) (Smith, 2002) was used to extract the
intra-cranial volume (ICV) for each subject by removal of the
skull and infratentorial structures. In addition the -S and -B option
were used to improve removal of the eye, optic nerves and to apply
a bias field correction. The pre-processed skull stripped MRIs were
then used for all further processing steps.

ADNI-1
All available post-acquisition corrected baseline (screening) and

24-month 1.5 Tesla T1-weighted ADNI-1 MRI data was downloaded
from http://www.loni.ucla.edu/ADNI/Data/. Raw images were adjusted
using a scheme that performed grad-warp correction of geometric dis-
tortion fromgradient non-linearity (Jovicich et al., 2006), B1-correction,
adjusting for inhomogeneity from B1 field non-uniformity (Jack et al.,
2008b), N3 bias field correction (Sled et al., 1998), and geometric scal-
ing to remove scanner calibration errors using a phantom scan acquired
for each participant.

http://www.loni.ucla.edu/ADNI/Data/
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Library creation

Template library subject selection
To generate a template library, fifty subjects' T1-weighted MRI

scans were selected a priori from the larger Sunnybrook dataset
using a combination of each subject's global Mini Mental State Exam
(MMSE) score (Folstein et al., 1975) and qualitative anatomical eval-
uation in three orthogonal planes using ANALYZE Software 10.0,
Mayo Clinic, Rochester. The goal of the selection process was to
generate a library that would deliver sufficient morphological vari-
ability within the MTL whilst matching subjects for age, education
and gender (Table 1). We included NC, AD, VaD (including a few
with hippocampal infarcts), AD+SVD and mixed dementia.
Template tracing
We selected candidate hippocampal tracing methods from 12 com-

monly used methods that were previously vetted by the ADNI-EADC
hippocampal harmonization project (Frisoni and Jack, 2011). First, a de-
tailed set of author endorsed standard operating procedures (SOPs)
were downloaded from the harmonization project website: www.
hippocampal-protocol.net. These procedures provided a detailed de-
scription and slice-by-slice delineation of the anatomical boundaries
on a T1-weighted high resolution MRI of a normal elder and person
with AD. All protocols in AC-PC space were selected to (1) control for
potential confounds between different stereotactic orientations,
(2) capture sufficient morphological variation between label methods
and (3) reduce the number of manual tracings performed by a single
operator (S.N.). For a detailed description of the five hippocampal
SOPs refer to www.hippocampal-protocol.net/SOPs. The basic differ-
ences between protocols are summarized in Table 1. To improve label
accuracy, the (Duvernoy, 1998) hippocampal atlas was additionally
used for neuroanatomical reference.

The hippocampal standardization project has harmonized
semantic differences across methods and distilled the hippocampus
into sub-compartments (Boccardi et al., 2011). The current study
does not attempt to parcellate the hippocampus. In contrast, we ad-
hered to the author endorsed SOPs to provide accurate delineation
and allow comparison to previous studies. However, there were a
number of author-supported modifications to the original manual
methods that were annotated in the harmonization project SOPs;
these modifications were applied to assemble the 5 atlas libraries.
Most notably the volumes based on the criteria (i.e. P4) (Pruessner
et al., 2000) were not pre-normalized to Talairach space, enabling di-
rect comparison between protocols. Further, the label sets based on
(Pantel et al., 2000) (P5) excluded the alveus and fimbria as per the
author endorsed SOP.

The 50 T1-weighted MRI atlases were constructed using ANALYZE
software. The same window-leveling procedure was used to ensure
consistent contrast for labeling. Specifically, for each image the
window-levelwas set until the choroid-plexuswithin the lateral ventri-
cles was just visible in coronal section. The tracings were viewed in
three orthogonal viewports (sagittal, coronal, and axial) to improve
segmentation accuracy, prevent partial volume effects and insure
inter-slice consistency. However, each template was traced principally
Table 1
Subject demographics for the Sunnybrook Atlas Library and the total subject pool for the L
NC=Normal Control, AD=Alzheimer's Disease, AD+SVD=Alzheimer's disease and Small

NC AD

N 12 21
Gender (M) 6 12
Average age (SD) (years) 67.6 (7.6) 68.9 (10.4)
Average education (SD) (years) 17.5 (2.0) 13.9 (3.7)
Average MMSE score (SD) (/30) 29.4 (0.7) 20.9 (5.8)
in the coronal orientation. The axial plane was also used to assess the
amygdalar–hippocampal boundary, and the sagittal plane was also
used to detect boundaries where appropriate.

Each template MRI and associated binary hippocampal tracing
was flipped along the x-coordinate so that a set of mirror image tem-
plates was produced according to previously published methods
(Collins and Pruessner, 2010). After the first set of tracings, labels
were reviewed for quality control by an experienced neuroradiologist
(FG).

Manual labeling inter/intra rater reproducibility

A single expert labeler (SN) produced all 5 100-atlas libraries. To en-
sure intra-rater label reproducibility, the same author traced the hippo-
campus bilaterally for each protocol on a random selection of 5
template MRIs. To test inter-rater tracing reproducibility, a second
rater (FG) performed bilateral tracing on the same 5 Sunnybrook tem-
plate MRIs for each protocol for a total of 50 labeled volumes. The sec-
ond labeler is an experienced neuroradiologist with over 20-years of
experience with manual tracing procedures. All intra- and inter-rater
reliability coefficients (ICCs) were computed using a random two-way
mixed effects design (Fleiss, 1986) in SPSS 12.0 software, SPSS Incorpo-
rated. Voxel similarity between label sets was quantified using the Dice
Similarity Coefficient (DSC).DSC=2*((M∩A)/(M+A)).WhereM is the
manually traced label set, A is the SBHV automatically derived label set
and ∩ is the intersection operator. The DSC provides a measure of voxel
correspondence between two label sets and is commonly used to eval-
uate the accuracy of segmentation techniques. Associated interquartile
ranges (IQR) were computed.

Automated segmentation method

The SBHV segmentation scheme involved three principal steps in-
cluding (1) template matching and selection, (2) atlas-to-target
image registration with label mapping and (3) generating a consen-
sus label set with intensity thresholding.

Template matching and selection
To ensure that all templates comprising the library were aligned

to a common space, the 100 BET skull-stripped template MRIs were
affinely registered to the freely downloadable MNI 152 template
with 1 mm3 isotropic resolution (Fonov et al., 2009, 2011). Similarly,
each query subject's T1-weighted MRI underwent an affine transfor-
mation and was interpolated into MNI 152 template space. A local
template matching strategy was applied for assessing similarity
between each template and the query image over a predefined
right and left volume of interest (VOI). The VOIs encompassed the
entire hippocampal formation and adjacent MTL anatomy. Cross-
correlation was used locally within the MTL VOIs to compare the
voxel intensities of each template to the query image for similarity
and ranking, which has been previously demonstrated as an appro-
priate similarity measure for the hippocampus (Aljabar et al., 2009)
and has been applied to ADNI-1 data (Leung et al., 2010). The
MNI-152 template VOIs were only used for template-query image
OOCV (n=35)+LOO (n=15) optimization dataset. MMSE=Mini Mental State Exam,
Vessel Disease, VaD=Vascular Dementia, Mixed AD=AD+VaD.

AD+SVD Mixed AD VaD Total

9 6 2 50
4 5 1 28
75.4 (7.6) 78.3 (7.8) 79.5 (0.7) 71.3 (9.5)
11.2 (3.3) 14.2 (2.5) 14 14.2 (3.6)
20.9 (5.6) 21.7 (4.2) 22 (5.7) 23.1 (5.9)

http://www.hippocampal-protocol.net
http://www.hippocampal-protocol.net
http://www.hippocampal-protocol.net/SOPs
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similarity assessment and ranking. The highest orderedMNI normal-
ized templates were indexed and the corresponding AC-PC
T1-weighted MRIs and binary labels were nonlinearly propagated
to the query image.

Atlas registration and label mapping
The ANTs registration toolkit was used for template-to-target

registration and label mapping (Avants et al., 2008). First, an affine
registration was applied to move the highest ranked AC–PC templates
into the target (query) image space. Next, the ANTs Symmetric Nor-
malization (SyN) algorithm, a deformable (nonlinear) algorithm
was initialized on the affine transformed images and used to further
register the templates to target space. The affine transform and
nonlinear warp files were recovered and used to propagate the atlas
hippocampal labels to the skull stripped target image using Nearest
Neighbour interpolation. The ANTs software was downloaded from
(http://www.picsl.upenn.edu/ANTS/).

The ANTs SyN parameters were optimized for intensity normalization
using a multi-step hierarchical-resolution scheme with (60×100×5)
number of iterations at each resolution level using histogram matching
and cross correlationwith a window radius of 2 and Gaussian regulariza-
tion with sigma of 3 (Avants et al., 2008).

Label fusion and thresholding
A non-weighted vote-rule was implemented in Matlab 14.0,

MathWorks Incorporated, to combine the best 15 intensity normal-
ized and resliced binary templates into target image space. Only odd
numbers of templates were selected for registration to target space
to exclude potential ties. This method of label fusion has previously
demonstrated high accuracy when compared to manual labels
(Collins and Pruessner, 2010).

A threshold window of 75–115% mean BET derived ICV intensity
was used to exclude potential CSF and WM false positive labels
based on the skull stripped T1-weighted MRI, and is similar to the
method of (Barnes et al., 2008; Leung et al., 2010). The selected
upper mean intensity threshold did not exclude portions of the
alveus/fimbria and occasionally excluded hyperintense voxels associ-
ated with WM of the parahippocampal gyrus. In a subset of subjects
portions of the fornix were excluded. To ensure consistency across la-
beling methodologies, the same threshold was used for all templates.
Finally, volumes for each protocol were computed for both left and
right hippocampal volumes by multiplying voxel size by binary
label count.

Method optimization

The SBHV segmentation pipeline was first trained on a random
subset of 15 Sunnybrook subjects with bilateral manual hippocampal
labels using a LOOCV design. This training dataset was separate from
the larger Sunnybrook dataset used to cross-validate the SBHV meth-
od. Template matching, registration and thresholding steps were op-
timized using the DSC. Supplementary Fig. 1 shows the protocol-wise
improvement in median DSC value, as the number of best-matching
templates fused together increased. Accuracy only incrementally im-
proved after fusing 13–15 templates. Thus, in an effort to optimize
processing time, only the highest ranked 15 templates were regis-
tered and propagated for all validation studies.

All volumes were processed on a Dell PowerEdge R710 rack-mount
server with dual 6-core Intel Xeon X5680 CPUs at 3.33Ghz (12 physical
cores — 24 cores with HyperThreading enabled), 16 GB (8×2GB)
1333 MHz DDR3 RAM, and two 146 GB 15 K RPM SAS hard drives.
This platform allowed >20 volumes to be computed simultaneously
over a period of approximately 7 h. Processing time was significantly
reduced if bilateral target hippocampi generated similar template
rankings.
Method validation

Leave-one-out cross-validation
To assess accuracy for each protocol, 35 subjects were selected

from the Sunnybrook dataset and the automatically generated labels
were compared to expert bilateral manual tracings using a LOOCV.
These datasets were independent of the Sunnybrook dataset used
to tune the method parameters. Voxel-wise accuracy between man-
ual and automated labels was measured using the DSC. Further,
volume-wise agreement between manual and automated volumes
was assessed using the Normalized Volume Difference (NVD).
NVD=2*100*abs((MV−AV) /(MV+AV)). Where MV and AV are the
manually labeled and SBHV automatically derived volumes respec-
tively. ICCs were also computed to compare measurement agree-
ment between SBHV and manually derived label sets. To ascertain
protocol-wise differences between median DSC measurements, a
Kruskal–Wallis Signed Rank Test was used in conjunction with
post-hoc Mann–Whitney comparisons, Bonferroni corrected for 10
multiple comparisons.

ADNI-1 cross-validation dataset
To test the reproducibility of the automated protocols on an exter-

nal dataset, two authors (SN and FG) traced a subset of randomly se-
lected ADNI-1 participants including 10 NEC, 10 MCI and 10 AD. To
reduce the number of manual tracings, three of the most morpholog-
ically different protocols from the Sunnybrook experiment, were used
to cross-validate automated label accuracy including protocols 1, 2
and 4. The right hippocampus was traced for each subject/protocol
(90 total manual segmentations). To ensure manual segmentation ac-
curacy, both tracers reviewed all manual labels and corrected manual
segmentations where appropriate. To ascertain voxel-wise similarity
DSC was measured, and volume-wise similarity was determined
using NVD. For both DSC and NVD 95% BACI (100,000 iterations with
replacement) were computed. Kruskal–Wallis Signed Rank Tests
were performed to test (1) group-wise DSC differences within each
protocol, (2) protocol-wise DSC differences by group (NC, MCI and
AD) and (3) differences among protocol-wise DSCs when collapsing
across all groups. Exploratory Mann–Whitney post-hoc comparisons
were performed when appropriate. In addition, Bland-Altman plots
were constructed to test for volume-biases.

Qualitative analysis of automatic segmentation error maps
To specifically assess the voxel-wise distribution of label errors be-

tween protocols for SBHV versus manual labeling, false positive (FP)
and false negative (FN) error maps were generated in a standardized
template space. Briefly, a standard template was computed using SyN
nonlinear registration, ANTs software, from 100 T1 MRIs selected
from the Sunnybrook Longitudinal Dementia study (Pettersen et al.,
2008). Subjects included both healthy elders and persons with AD.
All AC-PC T1 MRIs from the LOOCV and ADNI-1 validation studies
were nonlinearly registered to the Sunnybrook average brain atlas.
False positive and FN binary images were generated for each subject
and resliced into Sunnybrook template space using the nonlinear
warp files. For each protocol, FP and FN error maps were generated
in template space using a voxel counting method implemented in
MatLab (Mathworks). Protocol-wise error maps were generated for
the LOOCV dataset and were computed for each diagnostic group in
the ADNI-1 validation sample. Only voxels with error counts >1 were
visualized. Finally, a single observer (SN) visually assessed the maps.

Protocol-wise hippocampal biomarker performance applied to the entire
ADNI-1 dataset

ADNI-1 cross-sectional and longitudinal group-wise comparisons
We reported results using absolute hippocampal volumes to allow

comparison to previously published data. Hippocampal rates of atrophy

http://www.picsl.upenn.edu/ANTS/
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were calculated by normalizing to baseline volume and scan interval
using the following formula, ΔV=100*(baseline volume−24 month
volume)/(baseline volume)/(month scan interval/24). Results were
not annualized, as dividing rates by 12 months did not affect sample
sizes.

To test the effect of diagnostic group across all 5 protocols for both
baseline volume and 24-month rate of change, a Multivariate Analysis
of Covariance (MANCOVA) was calculated in SPSS 12.0 software, SPSS
Incorporated. Group was entered as a fixed factor and the baseline vol-
ume or baseline-normalized 24-month rate of change for each protocol
were used as dependent variables in the model. For group-wise analy-
ses, the MCI group was trichotomized into persons with MCI that
remained stable through 24 months (sMCI), persons with MCI that
had a clinical conversion to AD through 24 months (cMCI) and persons
with MCI that reverted fromMCI to NC through 24 months (rMCI). For
baseline volumes, ICV, age and gender were entered as nuisance vari-
ables, and age and gender were entered to adjust 24-month rate of
change comparisons. Post-hoc one-way general linear models were
computed to explore group-wise differences for each atlas protocol for
baseline volume (corrected for ICV, gender and age) and 24-month per-
cent change from baseline (corrected for gender and age). Post-hoc
tests were treated as exploratory and not corrected for multiple
comparisons.

ADNI-1 hippocampal volume and episodic memory associations
Baseline and 24-month longitudinal test scores were downloaded

from ADNI-1 for two commonly utilized neuropsychological tests
that are putatively associated with hippocampal-mediated episodic
memory, including the Auditory Verbal Learning Test (AVLT) (Rey,
1964) and the Logical Memory 1 (LM) exam (Wechsler, 1981). The
AVLT score was computed as the sum of trials 1–4 and the LM imme-
diate recall total score was collected for each participant. Multiple-
linear regressions using the enter method were calculated in SPSS
12.0 to compare the relationships between baseline and longitudinal
memorymeasures and total hippocampal volumetry for the five pro-
tocols. For baseline regressions, age, gender and ICV were entered as
nuisance variables, while age and gender were entered for longitudi-
nal calculations.

ADNI-1 hippocampal derived sample size measures
Power calculations were generated to test the sensitivity of each

protocol to measure a hypothetical reduction in the rate of atrophy
(disease progression) in MCI and AD studies. Specifically, sample
sizes were derived from MCI and AD ADNI-1 data to detect a 25% re-
duction in the 24-month rate of hippocampal atrophy in compari-
son to a hypothetical placebo group. Sample size=(u+v)2 (2σ2)/
(Δμ)2, where u=0.841 (80% power), v=1.96 (5% significance
level), Δμ is the change in baseline and scan interval normalized at-
rophy between groups, and σ is the SD of rates of atrophy in the
treatment and placebo groups (Fox et al., 2000). A further calcula-
tion accounted for the average rate of hippocampal atrophy in nor-
mal aging (adjusted sample sizes) by subtracting the protocol-wise
ADNI-1 NC baseline-normalized rate of atrophy from corresponding
MCI and AD rates. Holland et al. recently demonstrated NC-adjusted
power calculations to be a more valid estimate of sample size esti-
mates for trials assessing amyloid lowering therapies (Holland et
al., 2011). We report both non-adjusted and NC-adjusted sample
size calculations. For each sample size, 95% bias accelerated confi-
dence intervals (BACIs) (100,000 iterations with replacement)
were computed using the Matlab bootci function, Matlab 14.0,
MathWorks Incorporated.

Results

Demographics for the Sunnybrook LOOCV are available in Table 2,
and for the ADNI-1 experiment baseline demographic data is reported
in Table 3. There was considerable range in the period between
baseline/screening and 24-month follow-up, although we normalized
all volumetric rates of change for scan interval.

Manual labeling inter/intra-rater reproducibility

The inter- and intra-rater reproducibility of each hippocampal
protocol was excellent and is reported in Table 4. Intra-labeler repro-
ducibility was better than inter-labeler absolute agreement, with
lower variation among datasets. This was also reflected by high DSC
values across protocols with slightly better intra-labeler DSC values.
There were no major differences in reproducibility across protocols
with the exception of P2, which slightly underperformed when com-
pared to the other protocols. Although P1 required additional delin-
eation to excise the dorsal WM compartment, it demonstrated
comparable results to P3–P5, which included these structures. The
reproducibility of the fully automated multi-atlas method for each
protocol was unity.

Method validation

DSC manual vs. automatic segmentation accuracy

Sunnybrook optimization dataset and LOOCV dataset. No manual cor-
rections were performed to the automated segmentations for any
of the analyses in the current study. Fig. 1 shows 3D renderings of
P1-5 manual and corresponding automated hippocampal volumes
for a single subject's right hippocampus, acquired from the
Sunnybrook study. Table 5 shows voxel-wise DSC accuracy and ICC
results across protocols for the algorithm-training step (N=30 tem-
plates) used to optimize all parameters in the automatic pipeline.
For the LOOCV experiment (Table 5), the median DSCs (IQR) in
order of protocol inclusivity (greatest to least inclusive) were P5=
0.88 (0.02), P3=0.88 (0.02), P4=0.88 (0.03), P1=0.86 (0.04) and
P2=0.85 (0.04). ICCs were high for all protocols for the LOOCV
(Table 5). After correction for 10 nonparametric protocol-wise com-
parisons, P2 and P1 had significantly lower DSCs in comparison to the
more inclusive P3-P5 (pb0.05), while there were no significant differ-
ences between P1 and P2 DSC measurements. Moreover, P1 and P2
demonstrated higher variation in DSC when compared to the more in-
clusive atlas methods P3-P5.

ADNI-1 cross-validation dataset. Median DSCs were modestly im-
proved by approximately 1–3 percentage points across all proto-
cols for all groups in comparison to the LOOCV (Table 6).
Moreover, ICC values were comparable to the LOOCV when vol-
umes were pooled across groups (Table 6), and ICCs were lower
in both NC and MCI versus AD. When groups were pooled, the me-
dian DSCs for all protocols were significantly different (pb0.001)
and post-hoc comparisons ranked accuracy: P4>P1>P2 (P4 vs.
P1: pb0.024, P1 vs. P2: pb0.001 and P4 vs. P2: pb0.001). Interest-
ingly, when protocol-wise comparisons were performed within
each diagnostic group, only the AD group showed significant differ-
ences among all protocols (pb0.001). In NC, post-hoc tests showed
only significant median DSC differences between P2 and P4
(pb0.001), while in MCI significant differences were only realized
between P2 and P4 (pb0.001). For each protocol individually,
there were no significant differences for DSC measurements be-
tween NC, MCI or AD groups, with the exception of P4 (p=
0.008). For P4, the AD group had significantly higher DSC measure-
ments than normal elders (pb0.001).

Manual vs. automatic segmentation volumetric differences

LOOCV dataset. The average SBHV hippocampal volumes for P1-5 are
reported in Table 7, and when protocols were ordered from greatest to



Table 2
Abasic outline ofmajor anatomical hippocampal boundaries for 5/12 protocols surveyed by (Boccardi et al., 2011) andused to generate 5 SBHVmulti-atlas libraries. Landmarks definitionswere
adapted from Standard Operating Procedures (www.hippocampal-protocol.net/SOPs) and the original protocol manuscripts. αA pre-processing step in the protocol normalizes brains to
Talairach space, whichwas not performed in the current study. βThe updated standardized operating procedure for the hippocampal harmonization procedure includes the alveus and fimbria,
which are excluded in the original protocol. *The US commonly widens and becomes a visible landmark as a hypointense band on T1-weighted MRI in atrophic brains. Key: PHG=
parahippocampal gyrus, CSF=cerebrospinal fluid, WM=white matter, Av=alveus, AC=Ambient Cistern, EC=Entorhinal Cortex, IH=Inferior horn of lateral ventricle, Ag=Amygdala,
Hc=Hippocampus, MTL=Medial Temporal Lobe, VT=Lateral Ventricular Trigone (also includes atrium of lateral ventricle), Uncal Sulcus=US, Vertical Digitation=VD, Fornix=Fx,
Fimbria=Fb, Thalamus=Th, QC=Quadrigeminal Cistern.

Protocol
(P)
code

Segmentation
method

Hippocampal boarder Excluded anatomy

Superior Inferior Medial Lateral Posterior Anterior

P1 (Haller et al.,
1997)

Fx- Fb- or Av-GM
interface, IH, AC

WM of
PHG and
anteriorly:
PHGWM/
US*

Tail/Body of the Hc: contour of PHG
WM extended by horizontal line
towards the AC. Anterior: following
incline of PHG WM

Fx, IH,
WM of
MTL

First slice
where Hc
appears
adjacent to VT

Separation of Hc
and Ag (use axial
and sagittal views
to distinguish)

Fx, Fb, Av, PHG
(includes some of
the
superior-medial
PHG)

P2 (Killiany et
al., 1993)

Fx- Fb- or Av-GM
boundary, IH, AC

WM of
PHG and
anteriorly:
PHGWM/
US*

Posterior/body Hc an oblique line
along GM-WM of PHG extending to
the AC, and at head of HC following
incline of PHG WM

Fx, IH,
WM of
MTL

Longest length
of the Crus of
the Fx in
coronal view

Slice where the Av
differentiates
Ag from Hc

Fx, Fb, Av, PHG
and portions of
medial Sb at the
level of the body

P3 (Malykhin et
al., 2007)

Fx, Th, AC, Av
(most anterior slices)

WM of
PHG and
anteriorly:
PHGWM/
US*

WM of PHG, and when PHG not a
horizontal line used an oblique line
along PHG WM extending to the AC

Fx, VT,
IH,
WM of
MTL

First slice
where an ovoid
mass of Hc GM
is inferiomedial
to VT

Slice along
anterior–posterior
axis (sagitally)
where PHG WM is
first visible

Fx and portions of
both the Sb and
PHG (when PHG
WM not a straight
line)

P4 α(Pruessner
et al., 2000)

Posterior: horizontal line that
follows the superior PHGWM
extending to the AC. Other-
wise CSF of QC, IH or Av (most
anterior slices)

WM of
PHG and
anteriorly:
PHGWM/
US*

Posterior Hc: vertical line that
follows medial edge of VT, otherwise
CSF of AC. Body Hc: 45° line from
inferior body to the AC. Head Hc: CSF
of AC.

Fx, VT,
IH,
WM of
MTL

First ovoid mass
of GM
inferiomedial to
VT

Slice where either
the IH, Ag or Av is
present (used axial
view to help
interpret)

Portions of the
medial Sb, Medial
GM of PHG at
level of body, Fx

P5 β(Pantel et
al., 2000)

Th, AC, Av (most anterior
slices)

WM of
PHG and
anterio
WM/US*

Posterior Hc: QC, Body Hc: contour of
PHG-WM. Anterior Hc: oblique line
following PHG WM

Fx, VT,
IH,
WM of
MTL

First ovoid mass
of GM
inferiomedial to
VT

Slice atwhich head of
Hc appears as oval
shape below Ag
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least, were ranked P5>P3>P4>P1>P2, whichwas congruouswith the
anatomical definitions described in Table 1. The Bland-Altman plots in
Fig. 2 show that there was a small volume-bias in the LOOCV across
atlas protocols. Specifically, SBHV modestly underestimated the ground
truth volume on average.Moreover, there appeared to be a small bias to-
wards the mean, as the smaller hippocampi were consistently larger
than the manual segmentations, with the exception of P4. Table 7
shows that the median NVD was low across all protocols for the LOOCV
analysis (range: 5.05–7.96%). There was a trend towards lower NVDs as
protocols integrated more hippocampal anatomy. Indeed, for the
LOOCV dataset median (IQR) NVDs when ranked from the greatest to
Table 3
Demographic details of the complete baseline Alzheimer's Disease Neuroimaging Initiative-1 d
reported. MCI=Mild Cognitive Impairment, MCI converters (cMCI) are ADNI1 participants tha
reverters (rMCI) are participants that reverted froma clinical evaluation ofMCI to being normal
a 24-month period. MMSE=Mini Mental State Exam, LM1 — Logical Memory Test 1 Immed
volume.

NC MCI Total M

N (baseline) 227 412 13
N (24 month follow-up) 173 254 95
Average age (SD) (years) 76.0 (5.0) 74.7 (7.4) 74
Average education (SD) (years) 16.1 (2.8) 15.7 (3.0) 15
Gender (M) 118 262 81
Average MMSE score (SD) (/30) 29.12 (1.00) 27.07 (1.89) 26
Average scan interval (SD) (months) 24.7 (1.3) 24.6 (1.1) 24
Average ICV (SD) (ml) 1329.8 (132.3) 1346.3 (137.0) 13
the least inclusive protocol were P5=5.14 (7.58), P3=5.05 (6.96),
P4=6.43 (9.82), P1=6.23 (7.25) and P2=7.96 (8.77).

ADNI-1 cross-validation dataset. The range of right hippocmapal volumes
for the ADNI-1 validation was greater than the Sunnybrook LOOCV,
which also included bilateral hippocampal labels. When all groups
were pooled, the ADNI-1NVD valueswere similar to the LOOCV dataset.
For P1 and P4 the NVD values were lower in AD versus MCI and NC.
However, volume differences were consistently greater for P2 across
all groups. Further, the ADNI-1 SBHV segmentations demonstrated a
similar pattern of protocol-wise bias to the LOOCV, as Fig. 3 shows
ataset used to compute hippocampal volumes. Twenty-fourmonth follow-up data are also
t converted from a diagnosis of MCI to AD through a 24-month study window, while MCI
elders.MCI stable or sMCI are subjects that had a diagnosis ofMCI that did not change over
iate Recall, AVLT=Auditory Verbal Learning Test (sum of trials I–IV), ICV=intracranial

CI Converters MCI Reverters MCI Stable AD

4 13 262 200
10 148 111

.4 (7.2) 73.5 (9.0) 75.0 (7.5) 75.6 (7.7)

.7 (2.9) 15.8 (2.5) 15.7 (3.1) 14.7 (3.2)
9 172 103

.65 (1.73) 27.54 (1.39) 27.17 (1.81) 23.28 (2.04)

.6 (1.1) 24.4 (1.8) 24.6 (1.0) 24.7 (1.6)
27.2 (147.0) 1398.1 (164.1) 1353.4 (129.4) 1311.9 (146.6)

http://www.hippocampal-protocol.net/SOPs


Table 4
Inter- (n=5) and intra-rater (n=10) Dice Similarity Coefficients (DSC) and interquartile
ranges (IQR), intraclass correlation coefficients (ICC) and 95% confidence intervals (CI) for
bilateral manual hippocampal tracings on Sunnybrook 1.5 T MRI scans. P1=(Haller et al.,
1997), P2=(Killiany et al., 1993), P3=(Malykhin et al., 2007), P4=(Pruessner et al.,
2000) and P5=(Pantel et al., 2000).

Atlas Protocol Inter-rater Intra-rater

DSC IQR ICC 95% CI DSC IQR ICC 95% CI

P1 0.90 0.01 0.96 (0.72, 0.99) 0.92 0.01 0.97 (0.88, 0.99)
P2 0.91 0.01 0.92 (0.51, 0.99) 0.92 0.01 0.95 (0.81, 0.99)
P3 0.91 0.01 0.94 (0.47, 0.99) 0.92 0.01 0.97 (0.90, 0.99)
P4 0.91 0.01 0.95 (0.52, 0.99) 0.93 0.02 0.96 (0.74, 0.99)
P5 0.91 b0.01 0.95 (0.70, 0.99) 0.92 0.01 0.96 (0.76, 0.99)

Table 5
Voxel similarity measured using the Dice Similarity Coefficient (DSC) and associated
interquartile range (IQR) between manual and SBHV automatic bilateral hippocampal
labels for the Sunnybrook automated pipeline leave-one-out optimization dataset
(template n=30), and Sunnybrook LOOCV dataset (template n=70). Values reported
are based on the automated labels that were generated by nonlinear registration to the
target space and label fusion of the 15 best matching MRI templates. P1=(Haller et al.,
1997), P2=(Killiany et al., 1993), P3=(Malykhin et al., 2007), P4=(Pruessner et al.,
2000) and P5=(Pantel et al., 2000).

Atlas protocol Median DSC IQR ICC 95% CI

Sunnybrook optimization experiment
P1 0.87 0.05 0.93 (0.56–0.98)
P2 0.85 0.04 0.86 (0.42–0.96)
P3 0.89 0.03 0.94 (0.79–0.98)
P4 0.88 0.03 0.94 (0.60–0.98)
P5 0.89 0.03 0.93 (0.76–0.98)

Sunnybrook LOOCV experiment
P1 0.86 0.04 0.92 (0.72–0.96)
P2 0.85 0.04 0.88 (0.40–0.96)
P3 0.88 0.02 0.94 (0.80–0.99)
P4 0.88 0.03 0.91 (0.54–0.97)
P5 0.88 0.02 0.93 (0.72–0.97)
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that SBHV underestimated ADNI-1 volumes in comparison to manual
tracings (Table 8).

Qualitative analysis using error distribution maps

LOOCV error maps. For the LOOCV study there was a greater proportion
of FN (volume underestimation) versus FP (volume overestimation)
labels.

i) Caudal region: Themost pronounced segmentation errorswere lo-
calized to the caudal/posterior hippocampus. Caudal underesti-
mation was most conspicuous for P2, which used the crus of the
fornix as a boundary landmark (Fig. 4), P1 also suffered from cau-
dal underestimation in comparison to definitions which segment-
ed the first ovoid mass of posterior grey matter (i.e. P3-P5). There
was some overestimation of the superior-posterior hippocampus
across protocols, which labeled portions of the crus of the fornix
(Supplementary Fig. 2). For P4, the posteriormedial compartment
demonstrated greater FP and FN errors compared to P3 and P5.
This error was attributable to the manually placed vertical line
used to separate the gyrus fasciolaris and Andreas-Retzius gyrus.
Moreover, this may partially explain the high variance in NVD re-
alized for the P4 LOOCV analysis.

ii) Anterior region: The anterior hippocampus suffered from mod-
erate underestimation and overestimation equally across pro-
tocols.
Fig. 1. 3D rendered right hippocampal volumes for protocols 1–5, of a single Sunnybrook L
dorsomedial orientation with anterior/head of the hippocampus (forward), medial surface (rig
whereas the bottom hippocampus corresponds to the SBHV automatically derived volume usin
P3=(Malykhin et al., 2007), P4=(Pruessner et al., 2000) and P5=(Pantel et al., 2000). Image
iii) Dorsal border: Protocols 1 and P2 excised the alveus and fim-
bria located on the dorsal hippocampal surface. The grey-
white matter interface for this compartment suffered from
low contrast resolution and partial volume effects for both
datasets at the acquired 1.5 Tesla in-plane resolutions. SBHV
slightly overestimated the medial anterior-superior white
matter compartment for P1 and P2, resulting in a modest vol-
ume underestimation (Fig. 5); whereas, SBHV overestimated
this compartment for P1 and P2 throughout the body and tail
to a greater extent than P3–P5 (Fig. 6).

iv) Inferior border: All protocols showed some background labeling
of the parahippocampal white matter, resulting in a slight
overestimation of the inferior hippocampus (Fig. 7).

v) Medial region: In addition, the medial compartment was occa-
sionally mislabeled by SBHV. Automatic segmentationmodestly
underestimated the posterior medial subiculum (i.e. excluding
the presubiculum) among more medially inclusive protocols
(i.e. P1 and P5). However, protocols that used an oblique line
to separate the parahippocampal gyrus from the subiculum
ongitudinal Dementia Study participant with a clinical diagnosis of AD, displaying in
ht) and superior surface (top). The top panel shows the manually labeled hippocampus
g 15 fused templates per protocol. P1=(Haller et al., 1997), P2=(Killiany et al., 1993),
rendered in ITK-Snap (Yushkevich et al., 2006).



Table 6
Median voxel similarity measured using the Dice Similarity Coefficient (DSC) and
interquartile range (IQR) between manual and optimized automated right hippocampal
labels for the ADNI-1 cross-validation experiment (N=30). Manual and automated labels
were generated for P1, P2 and P4 from a random sample of ADNI-1 normal controls (NC)
(N=10), persons with mild cognitive impairment (MCI) and Alzheimer's Disease (AD).
P1=(Haller et al., 1997) P2=(Killiany et al., 1993) and P4=(Pruessner et al., 2000).

Dx Group Atlas protocol DSC (Median) IQR ICC 95% CI

NC (n=10) P1 0.88 0.02 0.88 (0.32–0.97)
P2 0.86 0.02 0.87 (0.03–0.98)
P4 0.89 0.02 0.86 (0.24–0.97)

MCI (n=10) P1 0.89 0.04 0.81 (0.01–0.96)
P2 0.88 0.02 0.72 (0.06–0.94)
P4 0.90 0.03 0.89 (0.02–0.98)

AD (n=10) P1 0.90 0.02 0.97 (0.66–0.99)
P2 0.88 0.03 0.94 (0.06–0.99)
P4 0.91 0.01 0.95 (0.50–0.99)

All Groups
(n=30)

P1 0.89 0.02 0.93 (0.49–0.98)
P2 0.87 0.03 0.89 (0.05–0.97)
P4 0.90 0.02 0.93 (0.43–0.98)
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(e.g. P4), tended to label more inferomedial parahippocampal
white matter along the hippocampal body.

vi) Right versus left volumes: Visually, there was slightly less
voxel-wise error in the posterior and superior compartments
on the right hippocampus versus the left (Figs. 4 and 5).

ADNI-1 cross validation error maps: The ADNI-1 cross validation study
revealed a consistent topographical distribution of errors when com-
pared to the LOOCV.

i) Caudal region: Fig. 8 shows a similar underestimation of the pos-
terior hippocampus across protocols in relation to the LOOCV.
However, qualitative assessment of ADNI-1 group-wise FN map
differences shown in Fig. 8 revealed greater heterogeneity of
caudal error distributions between protocols in AD compared to
MCI and NC, and this finding is congruous with our ADNI-1
protocol-wise DSC comparisons, which found significant differ-
ences between all protocols in AD. There was also some
overestimation within the posterior-medial compartment for P1
and P4.

ii) Anterior region: Similar to the LOOCV, the anterior hippocampus
suffered from volume underestimation and some overestimation
medially.

iii) Dorsal border: SBHV tended to underestimate the anterior
superior white matter compartment for the NC group to a
greater extent than the MCI and AD group. In contrast, there
was comparatively less overestimation of the dorsal white
Table 7
Summery of median absolute total (left+right) SBHV automatic (Auto) and manually
(Man) derived volumes with associated interquartile regions (IQR) for the Sunnybrook
LOOCV. Volume differences between automated and “ground-truth” manual labels are
reported as median Normalized Volume Differences (NVD) with a bootstrap 95% bias
accelerated confidence interval (CI) and IQRs. P1=(Haller et al., 1997), P2=(Killiany
et al., 1993), P3=(Malykhin et al., 2007), P4=(Pruessner et al., 2000) and P5=
(Pantel et al., 2000).

Atlas protocol Method Absolute volume
(mm3)

% Normalized
volume difference

Median IQR Median IQR

P1 Auto 2045.00 627.69 6.23 7.25
Man 2175.69 709.42

P2 Auto 1588.97 447.11 7.96 8.77
Man 1706.00 551.53

P3 Auto 2325.22 732.65 5.05 6.96
Man 2455.01 843.59

P4 Auto 2263.51 841.15 6.43 9.82
Man 2428.72 847.91

P5 Auto 2329.20 726.07 5.14 7.58
Man 2495.74 859.42

Fig. 2. Protocol-wise Bland–Altman Plots comparing manual versus SBHV automatically
derived manual labels for the Sunnybrook LOOCV. An optimized protocol was used for
SBHV segmentation, which fused the 15 best matching label sets in target image space.

image of Fig.�2


Fig. 3. Protocol-wise Bland–Altman plots comparing manual versus SBHV automatically
derived manual labels of the right hippocampus for the ADNI-1 cross-validation study.
An optimized protocol was used for SBHV segmentation, which propagated to and fused
the 15 best matching template library label sets in target (query) image space.

Table 8
Alzheimer's Disease Neuroimaging Initiative-1 group-wise cross-validation experiment
median and interquartile range (IQR) uncorrected right hippocampal volumes derived
from manual (Man) and automated (Auto) labeling methods based on 3 anatomically
unique segmentation protocols (P1=(Haller et al., 1997) P2=(Killiany et al., 1993) and
P4=(Pruessner et al., 2000)) (n=30). Percent normalized volume differences (NVDs)
are based on the difference between right hippocampal manual and automatic labels
and are reported as percentages with a bootstrap 95% confidence intervals (CI) and
interquartile ranges (IQR). Manual and automated labels were generated across protocols
for a random sample of normal controls (NC), persons with mild cognitive impairment
(MCI) and Alzheimer disease (AD).

Dx group Atlas protocol Method Volume (mm3) % Normalized
volume
difference

Median IQR Median IQR

NC (n=10) P1 Auto 2319.72 723.37 8.12 4.81
Man 2346.69 894.89

P2 Auto 1686.64 627.85 7.63 11.1
Man 1813.89 557.87

P4 Auto 2533.29 789.69 9.28 6.51
Man 2578.03 935.98

MCI (n=10) P1 Auto 2100.76 438.24 8.50 4.78
Man 2297.82 457.91

P2 Auto 1663.79 382.55 9.01 12.55
Man 1938.60 381.28

P4 Auto 2285.13 479.33 6.33 5.06
Man 2457.76 452.20

AD (n=10) P1 Auto 1559.38 542.48 4.27 4.84
Man 1697.74 696.87

P2 Auto 1188.74 520.27 9.91 7.74
Man 1360.42 682.75

P4 Auto 1732.02 548.51 5.85 9.09
Man 1890.68 792.54

All Groups (n=30) P1 Auto 2026.19 820.31 7.95 5.59
Man 2198.50 636.57

P2 Auto 1532.41 572.95 8.73 8.29
Man 1760.89 589.61

P4 Auto 2227.76 894.41 7.42 7.22
Man 2392.86 686.24
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matter compartment (i.e. alveus and fimbria) for the body of
the hippocampus in comparison to the LOOCV, and these ob-
servations to some extent support the higher DSC values
reported in the ADNI-1 validation compared to the LOOCV.

iv) Inferomedial region: The medial hippocampus was also over-
estimated across protocols and diagnostic groups. Specifically,
there were fewer inferomedial errors observed for the AD group
versus the MCI and NC group (Fig. 9). Indeed, this finding partially
explains the poorer segmentation accuracy of the SBHV tool in NC
and MCI in comparison to the AD group.

Protocol-wise hippocampal biomarker performance applied to the entire
ADNI-1 dataset

ADNI-1 cross-sectional group-wise volumetric comparisons
Three subjects had inconsistent clinical conversions over the

24-month study window and were included in the sMCI group. Specifi-
cally, subject 127_S_0112 (MCI) reverted→converted→ reverted, sub-
ject 136_S_0429 (MCI) converted→reverted, and subject 137_S_0669
(MCI) reverted→converted→reverted. Protocol-by-diagnostic mean
(SD) unadjusted total (right+left) baseline volumes are reported in
Supplementary Table 1 and are shown juxtaposed in Fig. 10. All baseline
comparisons were corrected for ICV, age and gender. All protocols
showed significantly larger mean baseline hippocampi in the NC group
in comparison to both the MCI and AD groups (pb0.001). The MCI
group had significantly smaller total adjusted hippocampal volumes
than NC but more volume than the AD group (pb0.001). The cMCI
group had significantly smaller adjusted hippocampal volumes than
sMCI (pb0.001) and rMCI (pb0.001), but significantly greater volumes
than AD (pb0.05) across protocols. The rMCI groupwas not significantly
different than the sMCI group. For all protocols, the sMCI and cMCI
hippocampal volumes were significantly smaller than NC (pb0.001);
however, the rMCI group was not significantly different from NC.

ADNI-1 longitudinal group-wise volumetric comparisons
Protocol-by-diagnostic mean (SD) baseline and scan interval

normalized total (right+left) rates of change are reported in Sup-
plementary Table 1 and are shown juxtaposed in Fig. 11. All of the
group-wise longitudinal comparisons were adjusted for age and
gender. For all protocols, both the AD and total MCI (tMCI) groups
had significantly greater rates of 24-month hippocampal atrophy
in comparison to the NC group (pb0.001), and the AD group had a
greater rate of atrophy than the tMCI and sMCI groups (pb0.001).
The tMCI, sMCI, cMCI and AD groups had significantly greater ad-
justed hippocampal atrophy than NC (pb0.001), while the rMCI
group was not significantly different from normal elders. In addi-
tion, the cMCI subgroup had significantly less atrophy than the AD
group (pb0.001), and only P1 and P4 demonstrated significant dif-
ferences between rMCI and AD (pb0.01), although the rMCI sample
size was small (N=10). An important finding was that the most in-
clusive protocols (i.e. P1 and P3–P5) demonstrated greater adjusted
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Fig. 4. False negative (FN) coronal distributionmaps for SBHV segmentation of the posterior hippocampal region from the results of the LOOCV. The color masks represent voxel-wise FN
counts (underestimation) across the five different protocols overlaid on the Sunnybrook average elderly 100-brain template. Each row of panels represent 4 serial slices from posterior
(right) to anterior (left) for a given protocol. Panel row A represents the posterior border region for P1 and P3–P5 with no overlay, whereas row B shows the border region for P2with no
overlay, which is located more anterior to the other protocols. SBHV often underestimated the caudal hippocampal region across all protocols; however, the more inclusive pro-
tocols P3–P5 demonstrated less FN errors than P1 and P2, which excluded portions of the hippocampal tail.
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rates of atrophy for cMCI compared to sMCI (pb0.01); however, P2
rates were not significantly different (p=0.065).

ADNI-1 hippocampal volumetry and episodic memory associations

MCI group correlations. Adjusted baseline hippocampal volumes were
significantly associated with baseline AVLT scores within the MCI
group for all protocols (Table 9). There were no marked differences
among hippocampal protocols for associations with baseline AVLT
scores in the MCI group. Similarly, Table 9 shows that the MCI base-
line LM scores were significantly associated with adjusted hippocam-
pal volumes across protocols, and there were no marked differences
between associations. For the MCI group, there were no significant as-
sociations between the rate of hippocampal change and 24-month
change in memory performance on the AVLT. In contrast, all protocols
with the exception of P2 were significantly correlated with 24-month
change on the LM (Table 9).

AD group correlations. Only baseline hippocampal and neurocognitive
scores were significantly associated for the AD group (Table 9). Baseline
AVLT score was significantly associated with adjusted baseline hippo-
campal volume across protocols. Moreover, baseline LM scores were sig-
nificantly associated with adjusted baseline hippocampal volumes
(pb0.01). P4 was slightly more associated with baseline memory per-
formance in comparison to the other protocols.

Protocol-wise ADNI-1 sample size estimates
Table 10 demonstrates that with the exception of P2 (which con-

sistently underperformed compared to all other protocols) the rank-
ing of labeling methods in MCI with respect to sample size changed
when adjusted for normal aging. Sample sizes for P3, P4 and P5
were smaller than P1 and P2, and P1 was smaller than P2. Within
the AD group, all protocols demonstrated smaller sample sizes than
P2, and this relationship remained after correction for normal aging.

Discussion

Based on the original multi-template work of (Aljabar et al., 2009;
Barnes et al., 2008; Heckemann et al., 2006) in conjunction with the
pipelines of (Collins and Pruessner, 2010; Leung et al., 2010; Wang
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Fig. 5. Protocol-wise coronal false negative (FN) distribution maps for SBHV segmenta-
tion of the medial anterior-superior alveus from the results of the LOOCV. The color
masks represent voxel-wise FN counts (underestimation) across the five different pro-
tocols overlaid on the Sunnybrook average elderly 100-brain template. The most
offending regions are highlighted with white arrows. SBHV tended to overestimate
the anterior-superior medial white matter compartment (white arrows) to a greater
extent in protocols, which excluded the alveus and fimbria (i.e. P1 and P2).

Fig. 6. Protocol-wise coronal false positive (FP) distribution maps for SBHV segmentation
of the superiorwhitematter compartment across the hippocampal body (i.e. alveus/fimbria)
from the results of the LOOCV. The color masks represent voxel-wise FP counts
(overestimation) across all five protocols projected onto the Sunnybrook average el-
derly 100-brain template. The most offending regions/protocols are highlighted with
white arrows. P1 and P2, which excluded the alveus and fimbria tended to
overestimate the superior white matter compartment, and this may be partially
explained by the poor contrast realized between grey and white matter within this
region.
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et al., 2011b), we developed a fully automated multi-atlas hippocam-
pal segmentation tool, SBHV, that spatially maps labels using the SyN
diffeomorphic registration algorithm. What distinguishes this study
from previous atlas comparisons in AD is the large number of unique
hippocampal atlas libraries that were generated by the first author —
5 hippocampal libraries totaling 500 manual hippocampal tracings.
Moreover, this was the first atlas library in AD to include a more het-
erogeneous sample of AD pathologies including patients with VaD
and SVD, which is important if an automated tool is to be applied clin-
ically or to large cohort studies in AD. This automatic framework
coupled with the entire ADNI-1 baseline and 24-month dataset, en-
abled the largest automated head-to-head comparison of hippocam-
pal atlas protocols in AD to-date and the first of its kind to assess
voxel-wise accuracy and voxel-wise error distributions among ana-
tomically distinct multi-atlas libraries. Here we report a number of
important biomarker performance-based findings among the 5 atlas
protocols tested including: group-wise discrimination, differential ac-
curacy and association with cognition. We also describe how both
multi-template segmentation accuracy and inclusivity among the
protocols sampled may influence hippocampal biomarker perfor-
mance in MCI and AD.
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Fig. 7. Protocol-wise coronal false positive (FP) distribution maps for SBHV segmenta-
tion from the results of the LOOCV. The color masks represent voxel-wise FP counts
across the five different surveyed protocols projected onto the Sunnybrook average el-
derly 100-brain template. White arrows highlight marked overestimation (FP errors)
of the inferior hippocampal compartment, which includes background regions of
parahippocampal white matter. This FP error similarly affected all protocols in the
LOOCV.
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DSC Manual Vs. automatic segmentation accuracy

Inter- and intra-rater agreement were excellent (intra-ICC: 0.95–
0.97, DSC=0.92–0.93: and inter-ICC: 0.92–0.96, DSC=0.90–0.91) and
within the range of previous studies (Barnes et al., 2009; Boccardi et
al., 2011; Collins and Pruessner, 2010; Leung et al., 2010). All protocols
demonstrated high accuracy in comparison to manual tracings across
both the LOOCV and ADNI-1 datasets. One of the principal findings
of this study was that the accuracy of automated hippocampal seg-
mentation appears to be modulated by morphological definition.
The most inclusive protocols (P3-P5) demonstrated the highest ac-
curacies in the LOOCV (DSC=0.88, 0.88 and 0.89 respectively), and
were not significantly different. The DSC values were modestly im-
proved across all protocols in the ADNI-1 validation over the
LOOCV; however, there were differences between datasets, which
may explain these findings. First, the LOOCV contained greater het-
erogeneity among disease profiles (i.e. VaD, AD, mixed AD, AD with
SVD and NC) when compared to the ADNI-1 NC, MCI and AD partic-
ipants. A recent study by (Scher et al., 2011) reported differential
patterns of hippocampal atrophy across dementia subgroups (AD
versus VaD), and this morphological heterogeneity may have con-
tributed to the greater protocol-wise DSC measures observed in the
ADNI-1 sample versus the LOOCV. Moreover, the diagnostic group
was shown to modulate both DSC and NVD in our ADNI-1 validation.
Second, the ADNI-1 validation only compared n=30 right hippo-
campal volumes per protocol versus n=70 right+left volumes for
the LOOCV. Although not reported in the results, right hippocampal
segmentations demonstrated a ½ percentage point improvement in
median DSC over left labels for the LOOCV. Finally, the median vol-
umes were slightly larger for the ADNI-1 NC and MCI validation
groups compared to the LOOCV dataset, which may have biased the
ADNI-1 DSC results. Despite these experimental differences, the
ADNI-1 validation reflected the same rank order of protocol-wise
DSC accuracy, comparable DSC variation within protocols and similar
FP/FN error distributions to those observed in the Sunnybrook
LOOCV.

Definition of the posterior border wasmost variable between proto-
cols, and upon visual inspection of the FN/FP errormaps,was frequently
underestimated by SBHV, with occasional inclusion (overestimation) of
the fornix. Certain hippocampal protocols use landmarks to determine
the posterior border (Bartzokis et al., 1998; deToledo-Morrell et al.,
2004; Jack, 1994; Killiany et al., 1993; Watson et al., 1992). And al-
though manually identified landmarks were designed to improve
inter- and intra-labeler precision, automated reproducibility of these
rule-based boundaries appears to be less accurate in heterogeneous co-
horts (e.g. elders and AD). For example, P4 used an orthogonal pair of
lines to manually define the hippocampal tail from the surrounding pa-
renchyma, which SBHV failed to consistently reproduce. Moreover, pro-
tocols that truncated caudal regions of the hippocampus (P1 and P2)
tended to suffer from greater posterior volume underestimation. The
most extreme example was P2 (Killiany et al., 1993), which excluded
significant portions of the hippocampal tail posterior to where the
crus of the fornix was visible in full profile. In dementia, there is fre-
quently thalamic atrophy that can modulate where an operator defines
the posterior boundary, oftenmore rostralwhen atrophy is present, and
a registration algorithm may not appropriately capture this boundary
shift.

Strengthening these observations, (Carmichael et al., 2005) found
marked label error along the posterior hippocampus, and this finding
was also observed using a multi-atlas based method in MCI and AD
(Leung et al., 2010). In a recent multi-atlas hippocampal segmenta-
tion study, which examined spatial bias in voting-based label fusion,
the greatest error (automatic label underestimation) was realized
for convex regions of the hippocampus, particularly in the posterior
and anterior regions (Wang and Yushkevich, 2012). However, the
small bias towards the mean observed for atrophic hippocampi in
the LOOCV and ADNI-1 study suggests that volume underestimation
may be less pronounced in smaller hippocampi. We did not explicitly
test the effect of registering small versus large templates to an atro-
phic hippocampus. Inclusion of a weighted voting strategy may also
reduce averaging bias. Alternatively, a greater number of atrophic
hippocampi may also reduce the affect of heterogeneous template
fusion.
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Fig. 8. False negative (FN) coronal distribution maps for SBHV segmentation of the posterior hippocampal region from the results of the ADNI-1 cross-validation study. The color
masks represent voxel-wise FN counts (underestimation) across P1, P2 and P4 (rows) and NC/MCI/AD ADNI-1 groups (columns), projected onto the Sunnybrook average elderly
100-brain template. Note, the P2 posterior border started more anterior to P1 and P4. Caudal FN error distributions for the ADNI-1 validation are similar to those observed in the
LOOCV. Qualitatively, caudal FN distributions between protocols varied the most in AD, and within the AD sample all protocols showed significantly different median Dice similarity
measures (P4>P1>P2). Further, P2 demonstrated the greatest caudal error as a result of the landmark-based definition used to demarcate the posterior border. For within protocol
comparisons, only P4 demonstrated significantly different voxel-wise accuracy measurements between groups (AD>NC).
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The next most variable region among protocols was the dorsal
hippocampal border (i.e. alveus and fimbria white matter compart-
ment). Protocols that excluded the alveus and fimbria (P1 and P2)
were significantly less accurate and had greater DSC variation than
structures including these dorsal white matter compartments (P3-P5).
Visual inspection of error distribution maps revealed a pattern of great-
er SBHV FP errors along the superior hippocampal body and FN errors at
the anterior-superior pole for both P1 and P2, which were generated
from the low contrast realized at this grey-white matter interface.

Further visual inspection of FN/FP error maps revealed that cer-
tain hippocampi were mislabeled along the inferomedial border,
which has been previously reported in (van der Lijn et al., 2008). A
thin layer of white matter separates the hippocampus from the
parahippocampl parenchyma, and occasionally, the SBHV tool seg-
mented these background structures across protocols. However, in-
tensity based thresholding reduced FP labels, and comparable
accuracy was achieved among protocols that predominantly varied
by medial definition (e.g. P3 versus P5).
Fig. 9. ADNI-1 group-wise coronal false positive (FP) distribution maps for SBHV-P4 segme
overestimation (FP errors) of the inferior hippocampal compartment. The color masks rep
elderly 100-brain template. Note that the FP error count was greater along the inferomedial
ilarity results in NC and MCI versus AD.
For our ADNI-1 voxel-overlap comparisons, there were significant
protocol-wise DSC differences within groups, but only the AD group
showed significant differences among all protocols sampled. More in-
clusive protocols always outperformed less inclusive definitions in AD
(P4>P1>P2). However, in MCI only the most inclusive protocol (P4)
outperformed the least inclusive P2, while in NC, P2 was less accurate
than the more inclusive P1 and P4. This suggests that more inclusive
protocols (i.e. that include the alveus/fimbria and>hippocampal tail)
provide superior accuracy across groups, and protocol accuracy as a
function of structural assembly appears to matter most in AD. Indeed,
our findings shown in Fig. 8 strengthen this notion, demonstrating
greater voxel-wise error differences between protocols in AD versus
MCI and NC.

It is important to note that FP/FN at the boundary of smaller vol-
umes can have a larger impact on voxel-wise similarity metrics in
comparison to more inclusive structures, and may partially explain
the lower DSC values for P1 and P2 in comparison to P3-P5. Moreover,
the ADNI-1 MCI and AD validation samples had a greater median
ntation from the results of the ADNI-1 cross-validation study. White arrows highlight
resent voxel-wise FP counts (overestimation) projected onto the Sunnybrook average
hippocampus in NC and MCI than AD, which may partially explain the lower Dice sim-
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Fig. 10. Protocol-specific comparisons of baseline total hippocampal volume (right+left) including ADNI-1 principal groups: Normal controls (NC), Mild Cognitive Impairment (total
group) (tMCI) and Alzheimer's Disease (AD) in addition to ADNI-1 MCI subgroups: MCI converters after 24 months (cMCI), MCI subjects who reverted back to normal elders (rMCI)
and MCI subjects who remained stable after 24 months (sMCI). The whiskers represent the 10th and 90th percentiles, and all data beyond these values are plotted. P1=(Haller et al.,
1997), P2=(Killiany et al., 1993), P3=(Malykhin et al., 2007), P4=(Pruessner et al., 2000) and P5=(Pantel et al., 2000).
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absolute volume in comparison to the median volume of the
Sunnybrook LOOCV, which may have partially contributed to the
higher DSC ADNI-1 validation results. Indeed, (Patenaude et al.,
2011) reported lower DSC values for small structures such as the
amygdala, nucleus accumbens and hippocampus in comparison to
larger subcortical compartments including the putamen, caudate
and thalamus. However, the FP and FN error maps in the current
study revealed greater absolute posterior and superior labeling errors
for P1 and P2 than the more inclusive P3-P5, suggesting that lower
DSC values are driven to a larger extent by protocol definition versus
the well-known bias of measuring smaller structures.

Interestingly, in the current study, persons with AD despite having
significantly smaller hippocampi and greater surface-area-to-volume
ratios than NC demonstrated comparable segmentation results to
normal elders. One explanation for this inconsistent finding may be
that the enlarged CSF compartment (cistern, choroid fissure and infe-
rior horns) surrounding atrophic hippocampi improved delineation
along the complete lateral extent, superior parenchymal surface,
and amygdalar–hippocampal interface, facilitating more robust regis-
tration outcomes. Additionally, SBHV segmentation accuracy along
the inferior border was improved in AD versus NC, which may also
support these findings.
Fig. 11. Protocol-specific comparisons of hippocampal 24-month rates of change normalized to
trols (NC),Mild Cognitive Impairment (total group) (tMCI) and Alzheimer's Disease (AD) in add
reverted back to normal elders (rMCI) and MCI subjects who remained stable after 24 months
values are plotted. P1=(Haller et al., 1997), P2=(Killiany et al., 1993), P3=(Malykhin et al.,
ADNI provides a platform for direct quantitative comparisons
among segmentation methods in AD. Since its inception, there have
been numerous head-to-head comparisons of hippocampal segmen-
tation algorithms (see (Weiner et al., 2012) for a detailed review),
and across these studies, much attention has been focused on algo-
rithmic differences. As manual “ground-truth” labels are not widely
available, definitive performance evaluation among atlas protocols
and automatedmethods in general, is complicated without consistent
manual labels for each protocol on the same MRI dataset. Thus, com-
parisons across previous validation studies should be interpreted cau-
tiously. Here we compare our voxel-overlap results to multi-template
studies based on similar manual protocols. In particular, we replicat-
ed DSC measures of a validation study in healthy adults by (Collins
and Pruessner, 2010), using a smaller atlas library with greater path-
ological heterogeneity. Moreover, this result was achieved with a
modified version of the labeling criteria developed by (Pruessner et
al., 2000) (P4), as our protocol defined the hippocampus along the
AC–PC line without normalization to Talairach space. Additionally,
we used the SyN nonlinear registration whereas Collins and
Pruessner used an elastic registration method (Collins et al., 1995).

We also demonstrated comparable results to previous studies of
multi-atlas based segmentation that employother anatomical definitions:
baseline volume and serial scanwindow including ADNI-1 principal groups: Normal con-
ition to ADNI-1MCI subgroups:MCI converters after 24 months (cMCI),MCI subjectswho
(sMCI). The whiskers represent the 10th and 90th percentiles, and all data beyond these
2007), P4=(Pruessner et al., 2000) and P5=(Pantel et al., 2000).
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Table 9
Protocol-specific standardizedβ coefficients grouped by diagnosis for ADNI-1 participants' cognitive test performance versus hippocampal volumetry. The standardized β represents the
number of standard deviations the cognitive measure increases/decreases with a one standard deviation increase of the hippocampal measurement. Note, significant standardized β
values (pb0.05) are indicated in bold. Both the logical memory 1 (LM) immediate recall test and the Auditory Verbal Learning Test (AVLT) (sum of trials I–IV) baseline and 24-month
change in test scores were associated with corresponding absolute total (right+left) hippocampal volumes and 24-month percent hippocampal atrophy. All cross-sectional models in-
cluded age, gender and intra-cranial volumewhereas all longitudinal linearmodels controlled for age and gender. MCI=Mild Cognitive Impairment and AD=Alzheimer's disease, P1=
(Haller et al., 1997), P2=(Killiany et al., 1993), P3=(Malykhin et al., 2007), P4=(Pruessner et al., 2000) and P5=(Pantel et al., 2000).

P1 P2 P3 P4 P5

β p-value β p-value β p-value β p-value Β p-value

Baseline hippocampal volume and AVLT score
MCI 0.22 b0.001 0.19 0.001 0.22 0.001 0.23 b0.001 0.22 b0.001
AD 0.22 0.021 0.21 0.025 0.22 0.017 0.27 0.003 0.22 0.016

Baseline hippocampal volume and LM score
MCI 0.14 0.019 0.11 0.05 0.14 0.013 0.16 0.005 0.14 0.013
AD 0.24 0.005 0.22 0.011 0.25 0.004 0.28 0.001 0.26 0.003

24 month atrophy and AVLT change
MCI −0.07 0.25 −0.03 0.629 −0.08 0.247 −0.09 0.153 −0.08 0.247
AD −0.01 0.912 −0.02 0.832 −0.01 0.894 −0.01 0.914 −0.01 0.930

24 month atrophy and LM change
MCI −0.17 0.008 −0.10 0.11 −0.18 0.005 −0.22 b0.001 −0.18 0.004
AD −0.16 0.106 −0.15 0.134 −0.14 0.159 −0.126 0.205 −0.137 0.171
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(Barnes et al., 2008; Hammers et al., 2007; Kim et al., 2012; van der
Lijn et al., 2008; Wang et al., 2011b; Wolz et al., 2009) (Table 11).
After semantic harmonization of current multi-atlas protocols in
Table 11, there are only a few widely used protocols for multi-atlas
segmentation to-date. All methods include the alveus/fimbria and
similarly define the anterior border. Protocols principally differ by
inclusion/exclusion of the caudal pole and medial compartment. Un-
fortunately, there is no clear relationship between structural defini-
tion and voxel-overlap in the literature, partly owing to algorithmic
and validation sample differences. Among state-of-the-art methods,
DSCs ranged between 0.83-0.91, and (Wang et al., 2011b) demon-
strated the highest accuracies to-date, also using the SyN registration
tool. However, the investigators derived their gold standard labels
from manually corrected automatic volumes and adjusted automat-
ed labels using a learning basedwrapper. In summary, SBHVwith the
P3, P4 or P5 library achieves high voxel-overlap compared to manual
labels both within a large multi-centre study and a diverse memory
clinic cohort that is consistent with recent work in dementia.
Manual vs. automatic segmentation volume differences

We also tested volumetric differences between manual and auto-
mated labels, and our data show that all 5 automated protocols
tended to underestimate absolute volumes for both the Sunnybrook
LOOCV and the ADNI-1 derived manual volumes. Additionally, the
error distribution maps revealed a similar pattern of FN labels com-
pared to the LOOCV dataset. The higher variation in NVD for P4 in
the LOOCV and ADNI-1 AD validation may be partially explained by
the orthogonal lines used to demarcate the posterior compartment.
Table 10
Protocol-wise (P1–P5) sample sizes (N) and bootstrap derived 95% confidence intervals (CI) re
impairment (MCI,) designed to detect a 25% change in the 24-month rate of hippocampal atrop
ple size calculations are reported as unadjusted or adjusted based on the mean 24-month pro
atrophy were entered as percentage change from baseline and normalized for each participan

Dx group P1 P2 P

n 95% CI n 95% CI n

MCI unadjusted 260 (202, 353) 339 (254, 479) 2
MCI adjusted 891 (670, 1841) 1109 (834, 2661) 8
AD unadjusted 152 (100, 263) 207 (132, 381) 1
AD adjusted 287 (194, 601) 379 (250, 867) 2
In certain subjects, this compartment was inconstantly labeled by
SBHV, generating greater NVDs.

Over all, automatic–manual volumetric similarity amongst the
assessed protocols was congruous with previous multi-atlas work in
healthy adults (Collins and Pruessner, 2010) (NVD=4.9%), right
temporal lobe epilepsy (TLE) (Kim et al., 2012) (absolute volume=
3134 mm3 manual vs. 3301 mm3 automatic) and AD (Leung et
al., 2010; Wang et al., 2011b) (absolute volume difference=56–
81 mm3). When volumetric accuracies are taken together with
voxel-wise overlap outcomes, these results suggest that more inclu-
sive protocols furnish superior accuracy versus conservative atlas
definitions, especially in AD and diagnostically heterogeneous sam-
ples. Our results also support the notion that SBHV voxel-wise seg-
mentation accuracy is lower in more diagnostically heterogeneous
samples (i.e. Sunnybrook versus ADNI-1). Finally, SBHV+a more
anatomically inclusive template library provides high fidelity seg-
mentation accuracy when compared to expert tracings and so is a
suitable method to replace manual segmentation for both the analy-
sis of large multi-centre AD studies and for use in a general memory
clinic cohort, with the caveat that image quality must be sufficient
to perform unbiased registration.
Cross-sectional and longitudinal group-wise volumetric comparisons for
the entire ADNI-1 dataset

Although an automated hippocampal volumetric technique may
demonstrate high technical accuracy, it is equally important to assess
its utility as a biomarker to measure disease progression, discriminate
amongst clinical cohorts, prognosticate decline and serve as a useful
quired for a hypothetical therapeutic trial in Alzheimer's disease (AD) or in mild cognitive
hy in comparison to a placebo group (with significance set at 0.05 and power at 0.8). Sam-
tocol-specific rate of hippocampal atrophy observed in ADNI-1 normal elders. All rates of
t's ADNI scan interval, which often was greater than 24 months.

3 P4 P5

95% CI n 95% CI n 95% CI

25 (175, 306) 214 (165, 292) 217 (169, 293)
70 (594,1585) 902 (640, 1844) 893 (510, 1258)
45 (97, 247) 135 (92, 229) 143 (95, 243)
97 (192, 585) 294 (198, 600) 302 (179, 534)



Table 11
Comparison of SBHV-P1, -P2 and -P4 atlas composition and accuracywith recent automated hippocampal segmentation techniques based onmulti-atlas registration and label fusion. αThe
authors reported that manual labels were provided by ADNI consortium. βBest result was achieved using atlas selection and an expectation maximization algorithm. DSC=Dice
Similarity Coefficient, JI=Jaccard Index=(M∩A)/(M∪A),whereM is themanually traced label set,A is the SBHVautomatically derived label set and∩ is the intersection operator, (R or L)
TLE=right/left temporal lobe epilepsy, +=more inclusive protocol,−=less inclusive protocol.

Method Segmentation protocol Anatomical definition DSC JI Validation sample Template library composition

Posterior Alveus/
Fimbria

Medial

(Hammers et al., 2007a) (Niemann et al., 2000) − + + 0.76 TLE Unilateral Sclerotic Healthy Young Adults
0.83 TLE Contralateral Side

(van der Lijn et al., 2008) Based on modified protocol
similar to (Jack, 1994)but
including the entire
hippocampal tail

+ + + 0.852 (left side)
0.864 (right side)

Healthy Elderly 20 Healthy Elderly Subjects

(Barnes et al., 2008a) (Watson et al., 1992) − + + 0.87 NC NC and AD
0.86 AD

(Wolz et al., 2009) N/Aα N/A N/A N/A 0.860 NC, MCI and AD NC, MCI and AD
(Lotjonen et al., 2010) N/Aα N/A N/A N/A 0.885β NC, MCI and AD NC, MCI and AD
(Collins and Pruessner, 2010) (Pruessner et al., 2000) + + − 0.887 0.796 Healthy Young Adults Healthy Young Adults
(Leung et al., 2010) (Watson et al., 1992) − + + 0.80 NC NC and AD

0.81 MCI
0.79 AD

(Wang et al., 2011b) (Hasboun et al., 1996) − + − 0.887 0.798 NC NC and MCI
0.908 0.833 NC (error corrected)
0.872 0.774 MCI
0.893 0.808 MCI (error corrected)

(Kim et al., 2012) (Watson et al., 1992) − + + 0.835 NC (left side) NC, LTLE and RTLE
0.854 NC (right side)
0.807 LTLE (left side)
0.841 LTLE (right side)
0.824 RTLE (right side)
0.823 RTLE (left side)

SBHC-P1 (Haller et al., 1997) + − + 0.88 NC NC, AD, Mixed Dementia,
AD+SVD and VaD0.89 MCI

0.90 AD
SBHC-P2 (Killiany et al., 1993) − − − 0.86 NC NC, AD, Mixed Dementia,

AD+SVD and VaD0.88 MCI
0.88 AD

SBHC-P4 (Pruessner et al., 2000) + + − 0.89 NC NC, AD, Mixed Dementia,
AD+SVD and VaD0.90 MCI

0.91 AD
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indirect marker for clinical trials. Here we report on the biomarker
performance outcomes of the 5 different SBHV atlas-protocols. Base-
line volumes ranged considerably between methods. In fact, mean
P2 NC volumes were 32% smaller than corresponding P5 volumes.
Nevertheless, all methods compare well with previous ADNI-1 cross-
sectional studies (Leung et al., 2010; Morra et al., 2009; Mouiha et al.,
2011; Schuff et al., 2009; Wolz et al., 2010b), distinguishing principal
groups by baseline volume (NC>MCI>AD) and similarly discriminated
across principal groups for 24-month atrophymeasures (AD>MCI>NC).
Consistent with previous studies, cMCI showed reduced baseline vol-
ume versus sMCI. However, the least inclusive protocol, P2, did not sig-
nificantly differentiate cMCI from sMCI, whereas all other protocols
showed cMCI rates to be greater than sMCI. This may suggest that def-
initions approaching the minimal hippocampal assembly are not suffi-
cient to capture atrophic changes automatically in multi-centre
studies of prodromal AD. Moreover, the absolute caudal segmentation
error realized for P2 may reduce the signal-to-noise ratio necessary to
detect group-wise separation.

Our annualizedmean longitudinalmeasures in AD, P1=4.12 %, P2=
4.07%, P3=4.13%, P4=4.52% and P5=4.16% and in NC, P1=1.11%,
P2=1.04%, P3=1.22%, P4=1.43% and P5=1.27% compare favorably
with a meta-analysis by (Barnes et al., 2009) of manually derived vol-
umes in NC=1.41% and AD=4.66%. Our annualized rates based on in-
dependent measures are consistent with a 1-year ADNI-1 study
evaluating automatically derived volumes: NC=1.40%, and AD=4.57%
(Leung et al., 2011). While our 24-month mean rates of change and var-
iances are greater than an ADNI-1 study using multi-atlas segmentation
with 4D graph cuts by (Wolz et al., 2010b), who report markedly lower
24-month mean rates of change (±SD) for NC / MCI / AD of: 1.66%±
2.07 (n=114), 4.50%±3.12 (n=157) and 6.74%±2.89 (n=81) when
compared to our results in Table 10. These differences may in part be
explained by differing sample sizes that do not represent the more com-
plete 24-month ADNI-1 sample. Indeed, 12-month and 24-month annu-
alized measures reported in (Wolz et al., 2010b), notably underestimate
the expected meta-analytically computed manual rate of change
reported in (Barnes et al., 2009). However, there are several sources of
bias between serial acquisitions including intensity differences, Interpo-
lation asymmetries, software upgrades and hardware drift (Fox et al.,
2011), which can introduce morphometric variability. Thus, simulta-
neous hippocampal segmentation of aligned scan pairs (i.e. comparative
analysis) using, for example, 4D graph cuts (Wolz et al., 2010b) or the
Boundary Shift Integral (BSI) with bias field correction (Leung et al.,
2011) has been shown to lower variance and improve sensitivity. Never-
theless, our goal was to directly compare different atlas protocols, not al-
gorithms, and the direct nature of this study design ensured all protocols
experienced identical algorithmic biases and very similar intensity inho-
mogeneity and resampling biases depending on subregions included/
excluded. Finally, our ADNI-1 results contrast with a recent study by
(Mouiha et al., 2011), who reported that both a semi-automated
atlas-based registrationmethod called SNT, Medtronic Surgical Naviga-
tion Technologies (Louisville, CO) (Haller et al., 1997) and FreeSurfer
(Fischl et al., 2002) annualized automatic measurements appear to sig-
nificantly overestimate the rate ofmeta-analyticallymeasuredmean at-
rophy in AD (7.75% and 10.09%) and in NC (2.95% and 1.67%). However,
multi-atlas methods have previously demonstrated greater accuracy
than both FreeSurfer (Wang et al., 2011b) and SNT (Leung et al., 2011).
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Protocol-wise associations with episodic memory

To be a valid surrogate marker of AD progression, hippocampal
volumetry should relate to cognitive phenotype. The hippocampus
measured in vivo has been strongly implicated in memory networks,
and has been associated with episodic memory impairment in AD.
However, anatomical variability among atlas-protocols may attenuate
hippocampal–neurocognitive correlations. Therefore we directly test-
ed whether differences existed between template ROI configuration
and episodic memory performance. Our findings showed that all pro-
tocols demonstrated comparable associations with AVLT and LM de-
rived episodic memory performance. Concordant with previous
ADNI-1 hippocampal studies (Apostolova et al., 2010; Leung et al.,
2010) baseline cognitive score was modestly associated with
unadjusted total baseline hippocampal volume in both MCI and AD.
Protocol 4 consistently demonstrated the highest association with
memory measures among techniques whilst P2 (the least compre-
hensive definition) showed slightly lower associations with cognitive
measures. A few studies have examined hippocampus sub-regional
associations with episodic memory in AD (Costafreda et al., 2011;
Lim et al., 2012; Shen et al., 2010). H.K. Lim and colleagues used the
FMRIB's Integrated Registration and Segmentation Tool (FIRST)
(Patenaude et al., 2011), a shape based method, and demonstrated
correlations in drug naïve patients with AD. The authors report asso-
ciations with verbal memory within the lateral subiculum and CA1
extending from the hippocampal head to tail. These results are
strengthened by the findings of (Costafreda et al., 2011) who demon-
strated more lateral and anterior localized hippocampal associations
with memory performance in AD compared to persons with MCI. As
all protocols (P1-P5) included similar anterior-lateral hippocampal
anatomy, it is unsurprising that we found only minor variation be-
tween methods in relation to cognitive performance. Moreover, the
majority of voxel-wise segmentation error differences among proto-
cols were localized to the posterior and superior borders and not
the lateral/anterior compartments, The small variation that did exist
between protocols for MCI and AD associations may reflect the differ-
ential error realized at the posterior border shown in Fig. 8 of the
ADNI-1 validation study.

Protocol-wise sample sizes in MCI and AD

Another important application of automated hippocampal volumetry
is towards quantitative assessment of macroscopic brain changes to
evaluate drug efficacy in MCI and the early stages of AD. Hippocampal
imaging markers may have the potential to lower sample sizes, which
can expedite trials of putative disease modifying therapies. While, we
acknowledge that using comparative serial measurement methods
such as the BSI would likely reduce sample sizes across protocols than
to our independent serial measures (baseline— 24 months), we showed
comparable sample sizes to previous ADNI-1 multi-atlas studies (Leung
et al., 2010) and other techniques reviewed in (Weiner et al., 2012). In-
terestingly, our SBHV-P1 24-monthMCI sample estimates (when adjust-
ed for 90 percent power) based on the protocol of (Haller et al., 1997),
were 31% lower, N=489, than 1-year sample sizes reported in (Schuff
et al., 2009), N=698, using SNT, two time-points and the same atlas pro-
tocol. A possible explanation for our superior results based on two time
points, is that hippocampal atrophy in MCI may accelerate and provide
a larger effect size at 2-years than 1-year serial measures. Indeed, Jack
and colleagues found an accelerated trajectory of brain atrophy in
amnestic MCI subjects (Jack et al., 2008a), and (Schuff et al., 2009) also
showed evidence for accelerated hippocampal change in ADNI-1 MCI
over 1-year. However, as previously mentioned, bias within different
techniques and between scan pairs canmodulate longitudinal measures.
While the trajectory of MCI atrophy is not entirely clear over 24 months,
the superior performance of multi-atlas segmentation compared to SNT
reported in (Leung et al., 2010) and our results, suggests that algorithmic
differences and susceptibility to bias rather than pathogenesis, may be
importantly implicated.

Sample size estimates globally increased after adjusting for the
rate of change in normal aging, which detects the maximum poten-
tial treatment effect. Interestingly, adjusting for atrophy in normal
aging appears to significantly improve the relative performance of
P1 to detect changes in MCI, while no significant changes were real-
ized among tracing methods in AD. The smaller adjusted sample size
derived from P1 atlases is due to the lower rate of atrophy measured
in the NC group. While P3 and P4 by definition excluded portions of
themedial body including part of themedial subiculum, sample sizes
were not remarkably different when compared to P1 and P5, which
integrated more of this region. This may be ascribed to either regis-
tration errors along the medial boundary, which have been observed
in the current study and by (van der Lijn et al., 2008), or that atrophy
of both the subiculum and adjacent parahippocmapal gyrus in AD,
reduces medial volumetric differences amongst protocols. Thus,
medial body definition across the protocols sampled does not appear
to markedly alter sensitivity of multi-atlas segmentation to detect
changes in disease progression in either MCI or AD. Another striking
observation was that more inclusive protocols (P1 and P3–P5)
consistently generated smaller sample sizes than the least inclusive
protocol (P2) in both MCI and AD. It is tempting to speculate that
the differential sensitivity to detect disease progression between
the protocols surveyed is largely driven by atrophywithin the hippo-
campal tail. Although we did not explicitly test this hypothesis, such
findings make intuitive sense given emerging shape-based analyses
in AD, which suggest there are significant atrophic changes present
in the posterior hippocampus (Gerardin et al., 2009; Shen et al.,
2012). Specifically, (Shen et al., 2012) recently demonstrated in a
subset of ADNI-1 participants that hippocampal atrophy in AD ap-
pears to involve the CA1, subiculum and regions of the hippocampal
tail. More inclusive protocols would capture these putative changes
and gain signal to detect volumetric differences between pathologi-
cal and healthy hippocampi. However, the proportionally higher
error distribution at the caudal and dorsal boundary of P2 and to a
lesser extent P1 compared to P3-5 suggests that automatic label
accuracy may partially modulate sample size differences among
hippocampal protocols.

Protocols excluded from comparison

The widespread use of several hippocampal methods in the litera-
ture has generated interest to harmonize hippocampal protocols in
AD, and The EADC-ADNI hippocampal initiative is currently working to-
wards a unified protocol for themanual delineation of the hippocampus
from 3D MRI. Briefly, the principal objectives of this initiative include
reviewing the literature, generating a robust in vivo definition of the
hippocampus, and finally validating and qualifying a single consensus
protocol on pathologically confirmed samples. Although the current
study compared a variety of different hippocampal assemblies, we did
not include all 12 published morphological variations assessed by the
harmonization initiative. To reduce the number of manual tracings by
the first author and to facilitate manual labeling in a common orienta-
tion, we selected 5/12 protocols for comparison. There were, however,
a few notable protocol exclusions that were based on the long axis ori-
entation of the hippocampus. First, the protocol of (Bartzokis et al.,
1998) was the most conservative anatomical definition among all 12
protocols, excluding the entire tail of the hippocampus and dorsal
WM compartment. Second, (Convit et al., 1997) used the most restric-
tive definition at the level of the hippocampal body, which excluded
the parahippocampal gyrus and large portions of the subiculum. Finally,
we did not include the protocols of (Jack, 1994; deToledo-Morrell et al.,
2004;Watson et al., 1992), which excluded the tail of the hippocampus
similar to (Killiany et al., 1993) (P2), but included notably more anato-
my along the medial body similar to P5.
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Algorithm-based limitations

There have been a number of recent technical developments that
aim to advance multi-template driven segmentation and may im-
prove the results reported here. Nevertheless, the spirit of the current
study was to develop a common platform inspired by previously pub-
lished work to directly evaluate the performance of template design
for multi-atlas segmentation. With this in mind, there were some lim-
itations to the present study. Emerging evidence suggests that region-
al nonlinear registration may offer superior registration outcomes in
comparison to whole brain approaches (Yousefi et al., 2011). While
the current study used global versus regionally specific nonlinear reg-
istration, we endeavored to optimize a multi-atlas scheme that could
accommodate several other discrete subcortical structures implicated
in AD, including the inferior horn, thalamus and also the cingulate
gyrus. Moreover, we compared intensity similarity between template
and target images using a localized VOI over the hippocampal region.

The current method used only the SyN nonlinear registration algo-
rithm, which is computationally expensive. However, this method
outperformed several nonlinear registration methods in a large head-
to-head comparison (Klein et al., 2009). Moreover, computationally
intensive registration algorithms are increasingly accessible for most
investigators given rapid improvements in multiplex computing, pro-
cessing speed and memory.

We cannot fully exclude the possibility that a larger template li-
brary (>100 templates) might improve segmentation results in AD
and NC, particularly with outliers. Nevertheless, the SBHV library
was selected based on a priori criteria to ensure sufficient template
variation in a heterogeneous AD sample and normal aging.

Additionally, we used a non-weighted voting strategy to compare
protocol libraries. However, more sophisticated weighted priors and
label fusion strategies may furnish even greater accuracy (Robitaille
and Duchesne, 2012; Wang et al., 2011a). We also affine registered
templates to the MNI-152 template brain to compare similarity over
the hippocampal region, since this has been previously shown to
identify similarity among MTL ROIs centered over the hippocampus
(Collins and Pruessner, 2010; Kim et al., 2012). However, this linear
fitting to a healthy average brain may lower variability to assess sim-
ilarity among atrophic brains (e.g. in AD); so future work should eval-
uate accuracy using an average elderly or AD-specific brain template.

Recently, (Wang et al., 2011b) developed a wrapper based correc-
tion method, which detects systematic bias across an input dataset
and accordingly adjusts final label volumes. This method improved
multi-atlas segmentation accuracy by 1% (DSC=0.0887→0.908) for
multi-template based segmentations and may significantly improve
segmentation outcomes for less inclusive protocols.

Conclusions

Accurate and precise automated hippocampal volumetry is ever
more important for ROI demarcation of functional imaging mea-
surements, supporting a diagnosis of AD and determining therapeu-
tic efficacy in putative disease modifying MCI and AD trials.
Although exceptional efforts are underway to manually harmonize
the hippocampus in AD, several automated methods are based on
a variety of labeling protocols, are widely used in other diseases be-
sides AD and a direct comparison among atlas protocols has not
been previously conducted to determine optimal hippocampal defi-
nitions for multi-atlas methods. The SBHV fully automated method
uses a template library derived from a representative memory clinic
cohort and demonstrates comparable to better voxel-overlap out-
comes (DSC=0.85–0.88) compared to previous approaches in NC
and AD. Although a consensus definition is ongoing for the hippo-
campus, it remains integral to determine how automatic segmenta-
tion performance (accuracy and sensitivity) is impacted by atlas
composition. Given our findings, the most accurate results were
for protocols that included the majority of the hippocampal tail,
alveus and fimbria: P3 (DSC=0.88), P4 (0.88) and P5 (0.88). Ana-
tomical differences for the medial hippocampal body did not mark-
edly affect accuracy among the most inclusive atlas protocols (P3–
P5). In contrast, voxel-wise error differences among protocols
were principally distributed around the alveus/fimbria grey-white
matter border and the posterior hippocampus. Moreover, errors
affecting the caudal hippocampus were more pronounced and desper-
ate in ADNI-1 AD subjects when the posterior definition varied among
protocols. Voxel-wise segmentation accuracy was lower across proto-
cols for the more pathologically heterogeneous Sunnybrook sample
(NC, AD+VaD, VaD, AD+SVD and AD) versus the ADNI-1 validation
dataset, which included only NC, AD and amnestic MCI subjects. All
protocols discriminated between NC, MCI and AD in the expected di-
rections and showed similar associations with episodic memory per-
formance and decline in both MCI and AD. At the same time, our
findings confirm manually derived rates of change in the literature.
Finally, more inclusive protocols appear to furnish slightly better
group-wise separation between MCI subgroups modestly better as-
sociations with episodic memory measures. A broad interpretation
of our results suggests that on the whole, more inclusive hippocam-
pal definitions that include the alveus, fimbria and>hippocampal
tail capture slightly more pathological change and offer more robust
segmentation outcomes, which together may explain the improved
biomarker performance in MCI and ADwhen compared to less inclu-
sive definitions. Given that the majority of automated techniques
rely on prior structural information, our ADNI-1 and Sunnybrook
Dementia Study performance findings have application to other au-
tomatic hippocampal segmentation techniques. Moreover, these re-
sults extend beyond AD to studies in healthy aging and may be
relevant to other neurodegenerative diseases. It is the investigators'
hope that these performance findings ultimately advance the selec-
tion, design and interpretation of atlases used for automatic hippo-
campal segmentation in AD.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.10.081.
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